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SUMMARY

The method of lines is used in this report for solving one linear,
two nonlinear elliptic boundary value problems and a linear eigenvalue
problem. An analysis of the stability and convergence is made in the linear
cases.

Y

RESUME

Dans le présent rapport, on exploite la méthode des lignes pour
résoudre un probléme linéaire, deux problémes non linéaires de valeurs
elliptiques aux limites et égszlement un probléme de valeur propre linéaire.
On effectue une analyse de la stabilité et de la convergence dans les
situations linéaires.
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APPLICATION OF THE METHOD OF LINES TO THE SOLUTION
OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

CHAPTER 1.0 INTRODUCTION

The method described in this report is known as the method of lines (from here on we refer
to the method as MOL) in the Soviet Union, where it has been used for some forty years. The basic
feature of the method is that derivatives with respect to one of the independent variables remain con-
tinuous, while derivatives with respect to the other independent variables are replaced by finite-
difference approximations. For a two-dimensional problem in a rectangle the region could be consid-
ered as divided into strips by dividing lines (hence the name) parallel to one of the axes. At each line
the derivatives normal to that line would be replaced by finite differences and the other variable left
continuous. Thus the system of partial differential equations is replaced by a system of ordinary dif-
ferential equations. The resulting ordinary differential equations may then be solved, at least in some
cases, by analytic methods. For instance Poisson’s equation with linear boundary conditions has
received much attention, Liskovets (1965) and Leser and Harrison (1966). In the case of more general
equations, particularly those of nonlinear type, analytic solutions of the ordinary differential equations
may be impossible and the problem must be treated as a two-point boundary-value problem to be
solved numerically. This problem may then be solved by either a boundary-value technique such as
finite differences or by the shooting method for two-point boundary-value problems. The former
technique would be equivalent to solving the original problem by the grid finite-difference method.
The shooting method involves estimating unknown conditions at the initial point and integrating the
ordinary differential equations across to the end point. The required boundary conditions at the end
point can then be satisfied by iterating on the missing initial conditions. Because of the elliptic nature
of the partial differential equations this initial-value integration is strictly improper. Indeed it can be
shown (Chapter 3) that the ordinary differential equations are inherently unstable. One of the
purposes of this paper is to convince the reader that in many physical problems of interest accurate
solutions can readily be obtained by MOL even though the problem is incorrectly posed. It is shown
that if the region of interest is divided into sufficiently few strips by the dividing lines then accurate
solutions can be obtained by using high-order finite-difference approximations. As more and more
strips are taken the results may at first improve but they will eventually become meaningless and the
iteration technique will not converge to a solution.

The work done in the Soviet Union on MOL has largely been limited to solving linear
equations of elliptic (as well as parabolic and hyperbolic) type. A 1965 review paper by Liskovets
gives an extensive list of references to provide the mathematical background and development of MOL.
These workers have developed analytic solutions of the linear ordinary differential equations for
certain cases. Also, solutions of Poisson’s equation with linear boundary conditions were obtained in
the United States by Leser and Harrison (1966), again using analytic solutions of the ordinary differ-
ential equations.

It appears that MOL (and a similar technique called the method of integral relations) was
first used in nonlinear problems for the supersonic blunt-body problem which is of interest to aero-
dynamicists, Belotserkovskii (1965). Klunker, South and Davis (1971) have discussed more recent
applications of the method to the solution of equations of elliptic type such as the supersonic blunt-
body problem and conical flow problems which are of great importance in aerodynamics. In general
the method has received more attention for solving the correctly posed parabolic type of equation.
Aktas (1978) gives a recent review of some applications of MOL to parabolic and hyperbolic as well as
elliptic problems.

After describing the method of lines in Chapter 2 we then carry out a stability analysis in
Chapter 3. Some examples are next discussed in Chapter 4 and, finally, in Chapter 5, we look at
solutions to eigenvalue problems.

L R SR [ L T R . e L

e L

¢ 0 A A s Amin b




S 2o e - s

y 2 v .
Y RPN S

= 3 v b RSSO i T

Sl e s5p gt

o5 A AU g W

REFERENCES FOR CHAPTER 1

Aktas, Z.

Belotserkovskii, O.M.
Chushkin, P.1.

Klunker, E.B.
South, J.C., Jr.
Davis, Ruby M.

Leser, T.
Harrison, J.T.

Liskovets, O.A.

On the Application of the Method of Lines.
Second International Conference on App. Num. Modelling,

Sept. 1978.

The Numerical Solution of Problems in Gas Dynamics.
IN Basic Developments in Fluid Dynamics (M. Holt, Ed.), Vol. 1,
Academic Press, New York, 1965.

Calculation of Nonlinear Conical Flows by the Method of Lines.
NASA TR R-374, 1971.

The Method of Lines for Numerical Solution of Partial

Differential Equations.
Ballistic Research Laboratories, BRLR 1311, March, 1966.

The Method of Lines (Review), Differential Equations I (1965).
Translation of Differential’nye Uravneniya 1 (1965), pp. 1308-

1323.

- ey a o ? 1;",.,;&;13\xﬁ‘?'f“?ﬂ;*“!&gw ~



CHAPTER 2.0 THE METHOD OF LINES
2.1 A Description of the Method

In order to describe the method we consider the simple case of Poisson’s equation

2 aZ
VL, ) 2.1)
ox? oy?

Yy =0onx=0 2.2)
and
Y =sintxony=>0 (2.3)

Along y = 0 and along x = a the solutions are to be symmetric.

b V= sinTx N

=0
4 SYMMETRY

\J
>

SYMMETRY a

FIG. 2.1 MOL APPLIED TO A RECTANGLE

This simple linear case is sufficiently detailed to describe the principles of the method of lines. More
complicated equations and boundary conditions can be solved in the same manner. Minor differences
in the treatment of other equations and boundary conditions are seen in the examples of Chapter 4.
For example, mixed derivatives and higher order partial differential equations are handled in the
Example of Section 4.2.
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Other geometries may be treated after transformation as shown later.
A We first take equally spaced lines parallel to the x axis and number them (see Fig. 2.1)
{
b
0,1,2, ... N where N is the number of divisions in the region 0<y<b, thush = ﬁ
H .
: !
; Next we write the Equation (2.1) as a set of ordinary differential equations. Lettingp =y
§ we have, at each linei(i=0,1...N-1)
o Vit = 205 + iy 2 42)
—— =3 x, . -_— . a
! O (%,y3) 2 ( ,,
i i
E L ‘il
F dy; !‘
i — = p; 2.4b
7_ since we have approximated y,, by the three point difference formula }
‘ X, +h) - 2 , + 3 -h
1 by = Y(x,y+h) Y(xy) + y(xy-h) o(h2y!H) 2.5) ‘
- h2
At line N we have
! YN = sinTx (2.6a)
: |
-é while at the image line i = -1 we have
¥
Vo = ¥ (2.6b)
The initial and end conditions for the system are L
H
v; =0 (2.7)
: at x = 0 and
i - ,
g :
g at x = a to ensure symmetry of Y about that point. :
g The system given by (2.4) is now a system of ordinary differential equations with two point z

boundary conditions. Thus it can be solved by standard shooting techniques used for solving two
point boundary value problems. Some of these methods are given in Keller (1968) in which the

' - V - e g} . . ~J 3
. - A A
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contracting map approach and the variational approach using Newton’s method of iteration are
described. The latter method is much faster than the former and so is to be recommended. We
describe next methods which are similar to the variational approach but which do not set up the
variational equations as such. They are thus easier to program and yet still have the advantage of

second order convergence. We first discuss Newton’s method and then Powell’s (1965) method as
applied to the shooting technique.

gty W 7 g g

2.2 Newton’s Method of Iteration Applied to the Two Point Boundary Value Problem

We first notice that the problem is solved completely provided that we know the initial ’
slopes ;

z p; = Fi

(i=0,1...N-1)say at x = 0. This is clear since a knowledge of F; enables us to integrate the
Equations (2.4) from x = 0 to x = a by standard methods such as Runge Kutta. The present authors
normally use Hamming’s predictor modifier corrector (PMC) method, see Hamming 1959, with the
Runge Kutta starting procedure. The PMC method has a discretization error 0(8§x>) and requires half
as many gradient evaluations as the full Runge Kutta method. On each evaluation of the gradients in
(2.4) the boundary conditions (2.6) are used and thus automatically satisfied. Hence integration to

x = a (provided round off errors, discretization errors and inherent instability are negligible — see later)
is achieved and we recover the boundary condition (2.8). Now, all boundary conditions are satisfied
as well as the differential equations and we have a complete solution.

k4 e e

However, since we do not know F; a priori, we must develop some scheme for improving on
a given estimate of F;. We notice that the only boundary conditions not satisfied after an integration
of (2.4) with a given estimate of F; are the conditions (2.8). The procedure to follow therefore is to
el dy;
i

drive the values ;— at x = a closer to zero by suitably adjusting F;.
b

Let

L —_——— e e

€ = (2.9)

SR e

at x =a. Then Eeiz can be made smaller by making changes to F; as indicated by the Newton iteration

N-1 aei
4 J_ZO a—Fj 5Fj = -¢(i=201...N-1) (2.10)

r AL ks

The above form requires approximations to the partial derivatives

R i)

O¢;

To obtain these Keller (1968), amongst others, uses the variational equations. However the present
authors have found that it is not necessary to use the variational equations, instead one can write
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aEi ei(FOFl P Fj + AF] P FN—I) - ei(FOFl e FJ . 'FN-I)

— (2.11)

oF, AF,

where AF; is a small value normally taken as 10"%AF, or 1076 if |AF;|<1 (64 bit words with approxi-
mately lé decimal digit accuracy have been used in ail our computations). In (2.11) the €; have been
written as functions of F;, . . . Fyy_, since a knowledge of F, . . . Fy_, enables us to integrate (2.4)
from x = 0 to x = a and so we find the ¢; as implicit functionsof F ... Fy_;.

Notice that the form (2.11) is exact if €; is a linear function of F . . . Fy_,.

The procedure to find the derivatives

aei
oF,

is therefore to make an integration of (2.4) with the latest estimate F;, . . . Fy_;. Then make successive
integrations with F; changed to F; + AF; forj = 0,1 ... N-1 and after each integration substitute into
(2.11) to find the required partiaf derivatives. Having completed these integrations we now substitute
(2.11) into (2.10) and find the changes BF]- by standard linear methods such as Gaussian elimination.

The values thus obtained for §F; can now be used to improve on the last estimate for F;.
This use of BFj is described below.

2.2.1 The Linear Case

If the differential equations and boundary conditions are linear as in our example then new
values of F; given by

F; = F; (old) + 8F;

with §F; found from (2.10) are the correct values. This follows from the fact that Newton’s scheme
(2.10) is quadratic in convergence so that if ¢; is a linear function of F; then the correction 8Fj is
exact. In addition the formula (2.11) is exact for linear systems,
2.2.2 The Nonlinear Case and the Modified Newton Method

It is well known that Newton’s method will not, in general, converge if the functions ¢; are

nonlinear functions of F; unless the initial estimate is sufficiently near the solution. However it can be
shown (see for example kowalik and Osborne, 1968) that the direction given by (2.10) i.e.

OF = (8Fy, 8Fy,... 8Fy_)
is downhill in the sense that Zeiz will decrease by changing F; such that
Fj = F; (old) + A8F; (2.12)

with A>>0. This feature leads us to the modified Newton procedure whereby A in (2.12) is chosen such
that Zeiz using new values of F; is less than the previous Zeiz using old values. Thus we select A =1,

et 4

: e e T T
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compute F; from (2.12) and hence compute new values of Ee by mtegratmn as described previously
and accept the new values of F; if they give an improvement to Ee If the new values do not yield an
improvement we take A = 1/2 and repeat the procedure. On successlve failures, if they occur, we use

A =1/4,1/8 ... and so on until success is achieved. Once we have a success we then use (2.10) to find
§ a new direction in which to advance. This method has been used successfully by Jones (1973), amongst
¥

others.

; Some improvement in efficiency can be made to the above modified Newton method and
# this is now described. Newton’s method requires a knowledge of the partial derivatives

0¢;

3 oF,

and this determination, from (2.11), may be costly since N integrations of (2.4) are needed. In
Newton’s method as described above these partial derivatives have to be evaluated at each step given by
(2.10). However Newton’s method can in some cases be improved on by using the following simplified
version (see Collatz (1966) for more details).

Essentially the method consists of using (2.10) repeatedly with values

0€;

e unchanged from an earlier step. The simplified version is illustrated in Figure 2.2 for the one unknown
£ F,. Clearly

:

5

]
f

: i
g (/)

3 1/ 1 i

) 7 - F

? ‘Q [+]

A

FIG. 2.2 SIMPLIFIED NEWTON METHOD

, convergence measured in terms of number of steps is slower. However it has the advantage that the
A derivatives
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aei

do not have to be evaluated repeatedly nor does the system (2.10) have to be solved completely since
the inverse of

de
J=—

oF

can be computed once and stored. South and Klunker (1969) have used this method successfully for
conical flow calculations. They find that the method works well if one is sufficiently near the solution.
If not one may use several modified Newton steps prior to using the simplified version.

2.3 Powell’s Method of Iteration
Powell’s method for minimizing a sum of squares of nonlinear functions is given in Powell

(1965). The method minimizes

N-1
T €
=0

with respect to Fg,F; . .. Fy_; (M<N), where the N functions ¢; are nonlinear functions of the M
unknowns F;. The method is essentially that of least squares minimization in which X ei2 is minimized
by making cflanges to Fj indicated by the direction §F given by

p> X — - 6F, Z g —(=0...M1) (2.13)

M-1 |N-1 aek aek N-1 aek
i=0 k=0 E)F, BFJ ] k=0 Z)Fl

The step to find new values of F = (F,F, ... Fy_,) is given by
F = F (old) + ASF

in which A is chosen (by search) such that Zeiz is minimized along the direction §F. During the search
along §F to locate the minimum, functions ¢; have to be evaluated at different values of A; thus one
can calculate an approximation, by differences, to the rate of change of ¢; along the direction §F at
the new minimum point. Powell shows how these partial derivatives can be used in conjunction with
previous values of

a€k
oF;

to determine the next step given by (2.13).
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In principle the method guarantees convergence since we do not take a step unless Eeiz
decreases. In practice the method has been found to fail but only rarely and usually when a poor
7 estimate has been made. Powell’s method when it first appeared in 1965 was probably the most
efficient method of its day. Other methods which may now be more efficient than Powell’s are the
spiral method of Jones (1970) and Peckham’s (1970) method but these have not been tried on two
point boundary value problems.

The advantage of Powell’s method over the modified and/or simplified Newton method is
5 firstly that Powell’s method is usually more efficient and secondly that fewer ‘“‘unknowns’’ can be used
b | to determine the solution. In MOL it may be that the unknown function, in our example

ay
i ox

at x = 0, can be represented in a series expansion, say

W M-1 _
<= = X Fjcosjy (2.14)
ox 0

(M<<XN) and in this way the work involved in finding the partial derivatives

Bei

: is greatly reduced since now we have to integrate (2.4) only M times to obtain the required partial

i derivatives. Such a form (2.14) was used in the conical flow calculation by Jones (1968).

Powell’s method also has quadratic convergence provided one is sufficiently near the
solution and provided ¢; = 0 at the minimum. Note that the correct solution is again obtained in one
i step if the system is linear.
During the preceding discussion the phrase ‘“provided one is sufficiently close to the

i solution” keeps recurring and indeed it is very important in nonlinear cases to have reasonable
: estimates of the unknowns particularly to cut down computing costs. In view of the importance we
B discuss initial estimates in a separate section to follow.
L]
: 2.4 Initial Estimates
H 2.4.1 The Linear Case
!
3 In the case where the differential equations and boundary conditions are linear the MOL
] equations can be solved in one step using Newton’s or Powell’s method whatever initial estimate is
% made.
i \
% However the above statement must be viewed with some caution. Although it is true in ;
3 principle, in practice we clearly have to have an initial estimate which at least allows integration to the ;
i end boundary x = a without the solution blowing up. In the authors’ experience it is possible to take

4 quite crude estimates such as, at x = 0,

' R Y O TR 0. s o - B s Bk o
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dx b ( )
in the example of Section 3.5. Compare this to the exact solution

dy coshry
2 = g—
dx coshrwb

The motivation behind the choice (2.15) was merely that it satisfied the boundary conditionaty =b
evaluated at x = 0.

2.4.2 The Nonlinear Case

As has been pointed out it is desirable (and sometimes essential) to have a reasonably good

estimate in the nonlinear case. The authors have found that this limitation is not severe for two
reasons.

The first reason is that a nonlinear problem can often be made linear by a suitable choice of
a parameter in the problem. This linear problem can then be solved with a fairly crude estimate and
then the parameter can be varied in discrete steps. To obtain the solution at each value of the para-
meter a good initial estimate is available by extrapolation from previous results.

The second reason is that a parameter in the problem can often be chosen such that a
solution is already known at that value and estimates for each successive values of the parameter are
then obtained by extrapolation as above. An example of this is in first setting the angle of incidence
to be zero in the conical flow calculations of Section 4.3; this has the effect, for the circular cone, of
making the flow axisymmetric and solutions in this case are well known.

Note that such an extrapolation (the authors use quadratic extrapolation as soon as three
previous solutions are available) is not restricted by computer storage limitations as it may be in grid
techniques. This follows since we have only O(N) unknowns to store rather than O(N 2y,

2.5 Termination Procedures

Good termination procedures for nonlinear problems are often difficult to find and some
attention should be paid to them. Clearly in the linear case one step is all that is needed and iteration
can then cease. Some of the subprograms written for Powell’s method terminate when the next

change to Fj, 6Fj , is less than a certain amount say |6 Fj |<p for some small value of p. However in
some cases a better criterion might clearly be

GFj
<p
F;

There may be a problem in choosing p since too small a value may result in excessive computer time.

The authors have found it better to use a criterion which depends on the size of the residuals
of €; — either

2
€

N-1
Le<y
0

FAR
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for example can be used. In the case of the conical flow calculations of Section 4.3 the choice of
residual could be found from physical reasoning and was related to the mass flow into or from the
body relative to the total free stream mass flow being less than a certain amount.

A combination of the above criteria together with a preset maximum number of integrations
is normally employed.

2.6 Other Systems

In order to describe MOL a simple linear example was discussed. However, the procedure of
solution for other systems of equations is identical to that already described, particularly as we have
already covered Newton’s and Powell’s methods for solving nonlinear problems. The user may need to
use other finite difference formulas, for example for a first derivative we could write

a_\l/ = \ll(x,Y*'h) - \P(X’Y‘h)
dy 2h

+ 0(h?2y!H) (2.16)

Formulas (2.5) and (2.16), accurate to 0(h?), which use values on 3 adjacent lines, may be
used in MOL applications. However a decided improvement can be obtained by using formulas
obtained from values on five adjacent lines. These formulas are

0¥ _ 4 ¥(xy+h) - ¥(xy-h)
dy 3 2h
_ 1 Y(x,y+2h) - Y(x,y-2h) 44V
2 prs + o(h*yY) (2.17a)
and
3%y _ 4 Y(xy+h) + Y(xy-h) - 2¥(x,y)
oy? 3 h?

¥(x,y+2h) + Y(x,y-2h) - 2¥(x.y)

yre + o(h*yVh (2.17b)

21
3

The advantages of using the five line schemes (2.17) in place of the three line schemes is
shown below. The next section then gives difference formulas of the same accuracy 0(h*) as (2.17)
which can be used on the boundary or at the line adjacent to the boundary.

N NG R Bl T
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Suppose E represents the exact derivative of a function ¢ with respect to y and let A; and A,
represent the approximations given by Equations (2.16) and (2.17a) respectively. Then it can be
shown, by looking at the truncation errors, that

Al 8y’ |y
&= [1-—|= — [—
E 6 dll

and that

A2 5y24 wV
62 = - _— = —_—,_——

E 24 wl

where 8y, and 8y, are the finite-difference increments. Now we want to find the ratio 8y,:5y, to give
the same accuracy in both formulas, i.e., €, = €, = €. For this condition we have

6}’2 0
— = 0.90
8y|

l/:J
~1
7z

m?
4 € " (2.18)

pVy!

The value of € 8y,/8y, can be calculated from this formula for well-known functions. Its
value is approximately 0.90 for sin ny, cos ny and exp(ny), while for log y its value is 0.57. Hence
provided the approximate formula (2.18) holds, it can be seen that if € is, say 10~4 (0.01% accuracy),
then 8y, /6y, lies between 6 for the log function and 9 for the sin, cos and exp functions.

The above analysis shows that 6-9 times as many dividing lines must be used with (2.16) to
get equivalent accuracy to (2.17a) for the first derivatives. Equation (2.16) requires about half as
many computer multiplications, divisions, etc., compared to (2.17a) but this affects only one state-
ment of the computer program and so is insignificant in terms of computer time. A similar saving in
lines may be made by using the 5-point scheme (2.17b) instead of (2.5) for second derivatives. The
superiority of the five line schemes over the three line schemes will be illustrated in Section 3.5.

2.7 Difference Formulas Applied Near a Boundary
To apply (2.17) on a line adjacent to a boundary line is not possible unless the boundary
line is a line of symmetry when image lines are used. If the boundary line is not a line of symmetry

then the following formulas are recommended.

(i) Dirichlet Boundary Condition

Use

W, 1

th— = =

3 1
3y 4(%‘%) - E(lh'lllz) + E(lllrll/s)

1
- Wi ¢ o(h’yY) (2.19)
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for a first derivative, where lines 0, 1, 2, 3, 4 are adjacent and line 0 forms the boundary. The symbols
Vos V1, etc., refer to the values of { on line 0, line 1, etc., and YV refers to the fifth derivative of ¥
with respect to y in the range considered. The upper sign is used if the lines 0, 1, 2, 3, 4 are at increas-
ing y values, otherwise the lower sign is used. For a second derivative

hZa llll
‘2“’-;‘ = - “(‘1/2 V) + _(ll/s Vi) - _(4‘4 Vi)
oy

0.125
g Wsv) + ——wo Y1) + 0(hoyVh) (2.20)

is recommended.

(ii) Neumann and Mixed Boundary Conditions
In this case dy//0y is a constant on the boundary or else 9y /dy is given as a function of .

In the latter case calculate dy/,/dy from the boundary condition and then, for both cases, use

PSR TP VPN DRI N SV A
th—> = “Wimd0) - 0¥ ¥ Th¥a) F gh ot v 0 YY) 21)

for a first derivative and

n ¥ 35 1 0625
5 = W) - gls-yy) + _(lh ¥1)
3y’
8.03125 0.625. Vo VI
+ = —ov) ¢ = By *omWYh (2.22)

for a second derivative. The appropriate + sign is chosen in the same way as in (i) above.

Also the appropriate form for 32y,/dy? is given by

h2 92, 3 17
s 4~y F h—-—-) - 15—y ¥ 2h—)
oy?
. Wy 1 _ GRS
+ —(Ws VYo ¥ 3h ""_) T —(Vs VYo F 4h?y_)
+ 0(hSyVh) (2.23)
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In addition to first and second derivatives, formulas for higher derivatives may be found if
required. For example, in the case of the Neumann boundary condition, 33y 1 /dy> can be determined
by solving the equations

nh2 nh3 nh4
Vner - ¥y = nh.p'l + LT)U’:I + (_g!)_wllll + (4!) wllV

h 5
S - 1129),

hawo h3 h4 hs
- = I_ 2,10 Do _ 8 v 2,V
R A R A CRPTAL

for wll" in terms of Y, ¥, V1, ¥3, ¥4 and 3y;/dy. Note that the required formula can be found
conveniently by computer matrix inversion.

2.8 Other Geometries

For simplicity we used a rectangle to describe MOL. The application to the geometry of
Figure 2.3 with polar co-ordinates is obvious; in this case lines ¢ = constant are used.

FIG. 2.3 MOL WITH POLAR CO-ORDINATES
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Application of the method to more complicated geometries is generally limited only by the
degree of ingenuity of the user, since an appropriate choice of co-ordinates and various transformations
can be used to map most regions into one of the simple regions just mentioned. For example the
region ABCD of Figure 2.4 can be mapped into the rectangle 0<{<1, 0<n<1 by the transformation

x-8(y) y-f,(x)
€= &8 )’ ns f5(x)-f;(x)

v
b9

FiG. 2.4 THE REGION ABCD

This transformation is now applied to the partial differential equations using, for example,

LIS I}
ax X3t ™3y
3? 3 d o, 0,3 a?
d —_—= — 4+ — ¢ £ — + — + 2 —_—
an o Exx Y Mxx an X a82 Nx on? Ex Mx atan

and then the resulting equations are solved by MOL in the ({¢,n7) plane. Note that the transfor-
mation preserves linearity. Such a transformation is used to solve the conical flow problem of
Section 4.3.
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2.9 A Cautionary Note on the Instability

The preceding description of MOL is somewhat idealized in the sense that we have assumed
that the computer round off errors, the discretisation error in the PMC integration scheme and also
the instability inherent in the ordinary differential equations are negligible. They of course are not
negligible; in fact it is known that MOL solutions are unstable since as more and more lines are used
the solutions diverge and thus become meaningless. This fact may deter people from using MOL and
one of our main purposes in this report is to show people that problems of physical interest have been
solved successfully by MOL. We also present an analysis of the instability in the linear case in the next
chapter. This analysis will show the form of the instability and thus the user will be made aware of
what problems to expect. Then the same linear problem that is analysed is solved numerically by
MOL. It will be seen that 4 or 5 significant figure accuracy is obtained.

Perhaps we should point out for the moment that MOL solutions may be compared to
asymptotic series solutions since the latter are divergent series so that as more and more terms are
taken the solutions become meaningless. However many useful results are obtained with asymptotic

series using only a few terms.

Also parallel shooting methods (Keller 1968) may be used to overcome the instability. In
these methods we subdivide the total range of integration 0<<x<a into subintervals and ‘shoot’, for
example, as shown diagrammatically in Figure 2.5 below. Of course the number of unknowns is
increased in this case since we have to estimate values at x = 0, x = a/2 and x = a. In the linear case the
total computational time will be practically the same as using the one complete range since the number

aei
of unknowns is increased by a factor of four but each integration to get the derivatives a_F is over the
i
range a/4. Of course the time involved in solving the linear system (2.10) or (2.13) would eventually
become large if many subintervals were used.

The parallel shooting method is used on our linear example in Section 3.5.2.

FIG. 2.5 PARALLEL SHOOTING RANGES
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CHAPTER 3.0 STABILITY AND CONVERGENCE OF MOL

3.1 Introduction

In the first part of this chapter Hadamard’s example of the Cauchy problem for the Laplace
equation in a rectangle is discussed. This example shows that we may expect MOL to be inherently

unstable.

A closer analysis of MOL, using the scheme (2.4), for the Laplace equation in a rectangle is
then made. This analysis shows that the general solution by MOL is comprised of two parts. The first
of these is an unwanted solution which is negligible for sufficiently small x (the continuous variable) or
when sufficiently few lines are used but which otherwise grows large. The second part of the general
MOL solution is the required solution which tends to the exact solution as the y increment tends to
zero (i.e. as the number of lines increases).

In the final part the stability and convergence of MOL is illustrated with a linear example.
It will be seen that good accuracy (4 significant figures) is obtained with a suitable choice of both
number of lines and integration step size dx.

3.2 Hadamard’s Example

Hadamard (1952) investigates the solution of Laplace’s equation and shows that, subject to
Cauchy data of a certain type, the solution is not well behaved since it will oscillate between very large
positive and negative values when the correct solution, in the limit of vanishing Cauchy data, should be

zero, Hadamard poses the example

VUuxx *+ Yyy =0 (3.1)
with Cauchy data given at the line x = 0,
v(0,y) = 0,
¥4(0,y) = A, sin ny, (3.2)

where n is large and A, is a function of n which grows small as n grows large (e.g., n"P, p > 0). The
solution to this problem is

Y(x,y) = (A,/n) sin ny sinh nx (3.3)

The sinh nx factor is large because of the growth of e"*. The sin ny factor causes oscillation of the
function with varying y. Hence however close to zero we choose to make the Cauchy data (i.e., n large)
the solution Y(x,y) will not be zero but will oscillate between large positive and negative values. Since
zero is the solution of (3.1) with vanishing Cauchy data (A, = 0) we conclude that for Laplace’s
equation the dependence of the solution on the initial data is not in general continuous.

Garabedian (1964) concludes also that the above problem is not correctly set or well posed.
He defines a boundary-value problem for a partial differential equation, or for a system of partial
differential equations, to be correctly set in the sense of Hadamard if and only if its solution exists, is
unique, and depends continuously on the data assigned.
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Consider now Hadamard’s example in the context of MOL. We may proceed with MOL by
estimating ¥, (0,y) and using this estimate integrate (3.1) numerically away from x = 0. After iteration
we arrive at a numerical solution of {,(0,y). Suppose the exact solution to the problem is zero, i.e.,
¥, (0,y) = 0, but that due to discretization and round-off errors the value of ¥, (0,y) is of order 10710,
Then the situation is similar to n being large in (3.2) in the sense that A is not quite zero. Aswe
integrate numerically in MOL away from x = 0 the solution will be in a form similar to (3.3) and will
thus become large and oscillatory for sufficiently large x. Thus we cannot obtain a good approximation
to the exact solution unless x is small.

It may also be noted that in the general case when solving by MOL even an exact ¥,(0,y)
cannot give a good solution for all x. The reason for this is that the x discretization error introduces
an unwanted solution equivalent to A, # 0 in the Hadamard example. Thus the instability is always
present but its contribution may be insignificant for x sufficiently small.

The above observations of instability are analyzed more closely in the next part of this
chapter. It will be confirmed that a reasonably accurate solution may be obtained if x is sufficiently
small. It will also be shown that the instability is worse if too many lines are used.

3.3 Analysis of Stability of MOL

To illustrate the stability and convergence consider the problem of solving Laplace’s
equation

Vax * ¥y =0 (3.4)
in a rectangular domain 0 < x <1, -b < y < b, with the following Dirichlet boundary conditions:
v(0,y) = ¥(ly) = 0, (3.5)
¥(x,b) = Y(x,-b) = sin7x (3.6)
The exact solution for this problem is known to be

cosh 7y sin 7x

3.7
cosh 7b 3.7)

U(x,y) =

We now consider the solution of this problem by MOL. Since the problem contains the two
lines of symmetry x = %2 and y = 0, we can reduce the region of interest to the upper left quadrant of
the rectangle, i.e. 0 < x <%, 0 <y <b. N - 1 interior lines are drawn paralle] to the x axis with equal
spacing h = b/N, so that

¥y, = nh = nb/N (3.8)

The symmetry conditions
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vx(4,y) = 0, (3.9)
d/(xv_y) = \P(X,Y)’ (310)
are applied.

To get some insight into the stability and convergence of MOL the three-point formula (2.5)
is used to approximate Y, in (3.4) giving

Vo + (Wne1 - 2¥n+¥p )2 =0  (n=012,...,N-1) (3.11)

where ,(x) is the approximation for ¥/(x,y,) and the primes indicate differentiation with respect to x.
To the system (3.11) we add the appropriate i-»undary and symmetry conditions,

Va(0) = 0, (3.12)
Va(*4) = 0, (3.13)
YN = sin7x, (3.14)
Yon(x) = ¥p(x), n=12,...,N-1 (3.15)

3.3.1 Complementary Function

To obtain the complete solution of (3.11)-(3.15) we first look for the complementary
function. This function must satisfy (3.11), (3.15) and also

Yy = 0 (3.16)

We attempt a colution

Vnp(x) = C, e*

and substitute into (3.11) to give the recurrence relation

? Che1 - 22C, +C,_; =0 (3.17)
where
E
B 232
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For the complementary function to satisfy (3.15) requires C_, = C, and thus using (3.17) we obtain,
for C; arbitrary,

z- CO = TI(Z)CO

..A’ PADNANY i vl BB Y SR g e
Q
[y
[}

C, = 22C; - Cy = (22% - 1)Cy = Ty(2)Cy
C; = 22C, - C; = 22(222 - 1)Cy - 2zCq = (42° - 82)Cy = T;(2)C
$
Cn = Tn(2)Co (3.18)

where T,(z) is the Chebyshev polynomial of order n. Now to satisfy (3.16), since C; # 0, we have

0 = Tn(z) = cos NO

where z = cosf. Thus 6 takes on discrete values given by 0., where

g | m7

N0m=-é-form=1,3,...,2N-1
Also
i 2,2
| sty =1 s m a1 2 T
! 9 m m 4N
K and so !1
; 2
3 = Zgn B
? [T, b sin 4N (3.19)
i
% Taking a linear combination of the allowable solution and using the fact that T, (z) = cos nd |
! gives us the complete complementary function ;
%
5 2N-1 nmw “mX —BmX
VOx) = T cos——(Ape™ + Bpe ™) (3.20) »
m=1,3. 2N ;
1 :
for constants A, B,,.

YDA = X aars
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3.3.2 Particular Integral

In this case we follow a similar procedure to that of finding the complementary function
except that we attempt a solution

Yn(x) = C,sinwx (3.21)

and obtain the recurrence relation

Cn+l - 2ZCn + Cn—l =0

wherez =1+ 1r2h2/2. Thus we obtain the same relations (3.18), and since we now require Yy = sin 7x
we have

CN = TN(Z)CO =1

or

_ 1
Tn(2)

Co

On putting cosh @ = z and using the fact that T,,(cosh 0) = cosh né, the particular integral (3.21)
becomes

cosh nf

osh NO sin 7x (3.22)

yP(x) =

where cosh 8 = 1 + 72h?/2. ‘

The complete solution to our problem is then

Vo) = vP @) + vO )

3.3.3 Instability in the Method of Lines

Clearly the solution we require by MOL is the particular integral (3.22). The complementary
function (8.20), in order to satisfy the boundary conditions (3.12) and (8.13), requires A, =B, = 0
for all m. However in solving the problem numerically it may be that, due to computer round off and
discretization errors in the numerical integration, the A, and B, are not quite zero. In this case we

may expect a large growth of the unwanted solution Ay, ¢'™ in (8.20) since u,x may grow rather
large. The size of the unwanted term and its form can be investigated by looking at the largest contri-
bution in (3.20). This is found by setting m = 2N - 1 since then




Zoin (- 1) « Zoos X - By I
: = — —-—] = —CO§—— = —— CO§ ——
i M n sin 2 "IN h aN b 4N

Thus, since N is normally greater than 3, u,, =~ 2N/b and the unwanted growth in wff)( X) is

1
G2N—l >~ A2N—l cos nw (1 - 2—N) esz/b

The cosine factor is approximately unity in magnitude thus

i d———— - an

2Nx
|G2N_]l ~ Ayn-) €Xp 0 (3.23)

It can be seen that the gradient d/dx[d/ff)(x)] will grow even more rapidly since this will be given by

, ON (2N
|Ganoa] = Aony o exo (5= (3.24)

In our particular problem we really require (1) = 0 to give symmetry about x = % but it can be seen
from (3.24) that if A,y _, is not quite zero and if the product Nx is sufficiently large then it would be
impossible to satisfy the symmetry condition.

23 LA e Ll
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* ) Now due to the truncation errors of a finite word length machine the initial conditions at
x = 0 are not, in general, stored exactly. This would have the effect of A, and B,, being not quite
zero and so lead to the instability.

- ki

Also, even with an infinite word length machine, the discretization errors of the numerical
integration scheme will cause instability. This can be seen by considering the first step from x = 0 to
x = §x using the exact conditions at x = 0 i.e. ¥,(0) = 0 and ¥ ,(0) = 7 cosh nf/cosh N6. We obtain a
numerical solution at x = §x given by

@ e O WP T

Vn

Yn(exact) + €,

2

Valexact) + 5,

where €, §, are the errors due to numerical integration. Thus the A, and B, now satisfy
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so clearly A, and B, are not zero and we again have an instability problem.

We have thus shown that instability is unavoidable but we do not know how serious it is
until we attempt solutions to practical problems. Since we now know the form of the unstable term
(3.23) or (3.24) we can at least hope to minimize its effect.

For instance, since it is the product Nx which causes instability, it may in some cases be
worthwhile using smaller integration distances x. This leads to the idea of the parallel shooting
technique mentioned at the end of Chapter 2. Also using a higher (than second) order difference
scheme for the Y yy derivative enables us to use fewer lines (N) to achieve the same accuracy for this
second derivative. In turn by using N smaller we reduce the exponential growth in (3.23) or (3.24).
For example the fourth order accurate scheme using five adjacent lines could be used. This scheme
was considered in Section 2.6 and its numerical application is covered in Section 3.5.3.

Notice that although the instability is unavoidable it is no worse than other similar techniques,
used particularly in the Soviet Union, such as Telenin’s method (see Gilinskii et al. (1964)) or the
Method of Integral Relations (MIR). Indeed it can be shown that the instability of MIR is likely to be
much worse than that of MOL. In Appendix A the MIR instability term similar to (3.24) is derived

and shown to be

4N?

Ajn_y exp ("—b) (3.25)

at x = 4. The functions (3.24) and (3.25), without the A,y _,, are tabulated in Table I for x = % and
b = 0.475 (the value used in our example later). From this table it can be seen that instability of MIR

is significantly worse.

Even so MIR has been used successfully in the Soviet Union and also by Hoit (1977) for
many years. In Chapter 5 of Holt’s book application of MIR to several problems such as the supersonic
blunt body problem and the laminar boundary layer equations is explained.

3.4 Convergence of the Particular Integral

It is of interest to compare the particular integral (3.22) with the exact solution (3.7). This
is accomplished by expanding the inverse hyperbolic function in 8 = cosh™! (1 + #2h?/2) giving

2h2
6 = 7h [ I +0(h4)]
24

and then expanding the particular integral in a Taylor series about h =0

3b3

n ¥n _
sin 7x [1 + (tanh 7b - -b—tanh 1ry,,> + O(N ‘)]

- cosh b 24N?

Thus the particular integral converges to the exact solution (3.7) and has error O(N2). This error is

b
expected since we use a formula of 0(h?) accuracy for the second derivative Yyyandh = E
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3.5 A Linear Example to [llustrate the Stability and Convergence

In this section we solve numerically the problem posed in Section 3.3 and given by Equations
(3.4)-(3.6) using b = 0.475. The exact solution (3.7) is tabulated in Table II for values of x = 0.125,
0.25, 0.375, 0.5 and for values of y = 0, 0.475/3 and 2/3 X 0.475; also shown are values of J,(x = 0)
at the above y values.

We will use the three line difference scheme (2.5) in order to get a better understanding of
the stability since in this case we know the analytic MOL solution is given by (3.22). With the three
line scheme we will investigate the effects of parallel shooting, of varying the number of lines, and of
varying the integration step size §x.

We will then use the five line scheme and show that accurate solutions can be obtained using
only a few lines.

3.5.1 The Three Line Analytical Solution

Let us consider the analytical solution to the MOL equations which is given by the particular
integral (3.22) of the ordinary differential Equations (3.11). This analytical solution represents the
best we can hope to achieve numerically since it does not contain any round off or discretization errors
and hence the complementary function (3.20) is zero. Remember that, numerically, we expect (3.20)
to be non zero and hence to cause some inaccuracy. The extent of the inaccuracy is what we want to
observe. Thus comparison of our numerical solution with the analytical MOL solution, rather than
with the exact solution (3.7), is more meaningful at this stage. The analytical MOL solution is given in
Table III at the same x and y values as listed for Table II; we present results for N = 3,6,9,12 and 15
(i.e. the number of lines used to divide the region 0 < y < b into strips).

3.5.2 The Three Line Numerical Scheme

This section is split into three parts which illustrate three different ways of overcoming the
instability.

The present results are obtained using the Runge Kutta Gill integration method which has
truncation error 0(6x>). One step of the Newton iteration scheme (2.10) is used to find the missing
initial conditions. In the tables to follow we print values of {/ and the initial slopes {,(x = 0) at the
(x,y) values mentioned in Section (3.5). We also print N (the number of lines), the integration step
size DELX, and the matching point XSHOOT used in the parallel shooting technique. If XSHOOT =0.5
then onlg one shooting range is used and we print out the SUM SQUARES GRADIENTS which repre-
sents Zp; at x = 0.5 where p; = dy;/0x; because of symmetry about x = 0.5 this quantity should be
zero. If XSHOOT # 0.5 then two shooting ranges have been used as shown below.

(a) Effect of Varying the Length of Shooting (Parallel Shooting)

In order to help to overcome the instability we can use a parallel shooting technique as
shown diagrammatically below.

I/_\ . /’\;l
0 x (shoot) 0.5

We first estunate i(0), integrate the differential equations from 0 Lo x(shoot) and obtain
values ‘P and p}, say, on line i at x = x(shoot). Also using estimates of ¥; and p; at
x = x(shoot) (deslgnated ¥5H and pfH say) we integrate the ordinary differential equations
to the end of the range x = 0 5 where we obtain values of p; = p;(0.5).
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Be suitably choosing p,(0), ySH and pf! we hope to solve the system of equations

p; (0.5) (symmetry about x = 0.5)

v - e -
matching at x = x(shoot)
pj - pfH (3.26)

The optimum choice of p,(0), Y5 and pf! is made using Newton’s method (2.10). Our
linear illustrative problem remains linear since the matching conditions at x = x(shoot) are
linear. Thus one step in the above method is all that is required.

Table IV shows the results of varying x(shoot) with N = 15 and §x = 1/32. It can be seen
that instability is least when using the smallest shooting range (i.e. x(shoot) = 0.25). Shoot-
ing the whole range is clearly hopeless while using x(shoot) = 0.125 or 0.375 gives fairly
reasonable results. Using x(shoot) = 0.25 gives good stability and hence a solution accurate
to almost 4 figures compared to the analytic MOL solution given in Table III. The quantity
SUM SQUARES RESIDUALS printed in the tables represents the sum of sqsua.res of the left
hand sides of (3.26). The two entries given for x = x(shoot) list values of ¥} (obtained after
integration from zero) and d/iS“ (the best values of i(XSHOOT) to minimize the RESIDUALS
of (3.26)).

Effect of Varying the Integration Step Length 6x
It has been shown that the instability is caused by terms of the type exp(u;5_; x). On

integrating numerically by the Runge Kutta Gill method we find that after k steps the term
exp(py -1 k 8x) is represented by EX where

2 3 4
E=1+A+A_+A_+_.A_
20 3 4

and A = pyy_; 8x. Thus the error grows in the numerical integration like EX rather than
exp(kA). EX is always less than exp(kA) for A > 0 and the ratio E¥/exp(kA) shrinks rapidly
with increasing A. For example when 6x = 1/4 (i.e. k = 2 for integration over the whole
range) EX/exp(kA) is about 1074 for N = 12.

Thus we may expect instability to improve as Ax is increased (but of course the particular
integral would not be so accurately represented).

Table V shows the improvement in stability for N = 15 and x(shoot) = 0.5. We can see that
we progress from the unstable cases of §x = 1/32 or 1/16 to a fairly stable solution with

&x = 1/8 and to a stable solution with 6x = 1/4. Referring to accuracy the latter two
solutions are reasonably good except at the point x =1/2, y = 2/3* 0.475.

Effect of Varying the Number of Lines

It can be seen from Table VI that the effect of decreasing the number of lines improves
enormously the behaviour of the instability. The N = 15 solution is hopelessly unstable,
while using N = 12 gives a mildly unstable situation (the results are not accurate compared
to the analytical MOL solution of Table III). Using N =9, 6 or 3 stability does not seem to
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be any problem and the accuracy of the solution is very good compared to the analytic MOL
solution (although not necessarily compared to the exact solution given in Table II).

To get good accuracy compared to the exact solution using the 3 line difference scheme we
would clearly have to use many lines (N = 57 would give 4 decimal figures accuracy) but
this, numerically, would give instability. Thus we clearly must use a higher order difference
scheme to represent the derivatives so that we can minimize the number of lines necessary to
achieve an accurate representation of the particular integral. This scheme is now investigated
numerically.

3.5.3 The Five Line Numerical Scheme

As we saw from the three line scheme applied to our linear example we can expect good
stability with N <X 9 but the accuracy may not be sufficiently accurate. To keep the stability and also
get accuracy we consider the fourth order accurate scheme using (2.17b) to represent the derivative
¥yy (with (2.20) used next to the boundary line y = b). This time we only consider shooting the one
range 0 < x < 0.5 since sufficient accuracy and stability is obtained in this case (using N < 9).

Table VII lists values of ¥ and the initial slopes Y, (x = 0) for some values of N and x. It
can be seen, by comparing with Table II, that almost 4 significant figure accuracy is obtained using
N =6 and 8x = 0.0625. Notice also that using the coarsest scheme, N = 3 and 8x = 0.25, produces
results with at worst 2% error in { and 1% error in the initial slopes. The N = 12 results again indicate
instability when dx is too small.

In terms of computer time the method is very efficient as can be seen from the N = 6,
5x = 0.0625 solution. This required only 0.3 seconds on an IBM 3032 computer. The efficiency is
confirmed by further computer times quoted in the nonlinear examples covered in the next chapter.

3.6 Summary

The three line scheme (2.5) to represent the derivative has been used mainly to illustrate the
instability inherent in the method of lines. It has been confirmed that three techniques help to over-
come the instability but the latter two decrease the accuracy of the particular integral which we seek
to obtain. It has been shown that, for our linear example, the higher order difference scheme using
five adjacent lines (2.17) gives an accurate representation of the particular integral while at the same
time giving a stable solution. Thus use of the five line scheme is always recommended.

Notice also that three line schemes of order (N™4) accuracy in the particular integral may be
used in certain cases. These schemes are given in Appendix B; they require calculating the derivatives
p; in the ordinary differential equations by solution of a tridiagonal system of equations. This can be
achieved efficiently by the Thomas algorithm (von Rosenburg, 1969).
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TABLE I

TABLE OF THE FUNCTIONS (3.24) AND (3.25) USING b = 0.475
TO ILLUSTRATE THE INSTABILITY OF MOL AND OF THE
METHOD OF INTEGRAL RELATIONS FOR N TOO LARGE

N (3.24) (3.25)
2 5.7, 2 45,4 (4.5 X 104
3 7.0, 3 3.0, 10
4 7.6,4 42,18
5 7.8,5 1.3,29
6 .1,6 8.1, 41
9 6.4,9 >1075
12 47,12 >1075
TABLE I
EXACT SOLUTION TO MOL LINEAR PROBLEM
X Y 0 0.475/3 2%0.475/3
0.125 0.1638 0.1845 0.2518
0.250 0.3027 0.3409 0.4653
0.375 0.3955 0.4454 0.6079
0.500 0.4281 0.4821 0.6580
INITIAL SLOPES 1.3449 1.5147 2.0671
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TABLE I

N=3
X Y= 0 0.475/3 2%0.475/3
0.125 0.1660 0.1866 0.2533
0.250 0.3068 0.3448 0.4680
0.375 0.4009 0.4505 0.6115
0.500 0.4339 0.4876 0.6619
INITIAL SLOPES 1.3632 1.5318 2.0794
N=6
X Y= 0 0.475/3 2*%0.475/3
0.125 0.1644 0.1850 0.2522
0.250 0.3037 0.3419 0.4660
0.375 0.3969 0.4467 0.6088
0.500 0.4296 0.4835 0.6590
INITIAL SLOPES 1.3495 1.5190 2.0702
N=9
X Y= 0 0.475/3 2*0.475/3
0.125 0.1641 0.1847 0.2520
0.250 0.3032 0.3414 0.4656
0.375 0.3961 0.4460 0.6083
0.500 0.4287 0.4828 0.6584
INITIAL SLOPES 1.3469 1.5166 2.0685
N=12
X Y= 0 0.475/3 2*0.475/3
0.125 0.1640 0.1846 0.2519
0.250 0.3030 0.3412 0.4654
0.375 0.3958 0.4458 0.6081
0.500 0.4285 0.4825 0.6582
INITIAL SLOPES 1.3460 1.5158 2.0679
N=15
X Y= 0 0.475/3 2*0.475/3
0.125 0.1639 0.1846 0.2519
0.250 0.3029 0.3411 0.4654
0.375 0.3957 0.4456 0.6080
0.500 0.4283 0.4824 0.6581
INITIAL SLOPES 1.3456 1.5154 2.0676
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TABLE IV

EFFECT OF VARYING X(SHOOT)

N=15 DELX = 0.03125 XSHOOT = 0.125
X Y= 0 0.475/3 2%0.475/3
0.125 0.1635 0.1840 0.2511
0.125 0.1635 0.1840 0.2511
0.250 0.3023 0.3401 0.4630
0.375 0.3955 0.4452 0.6015
0.500 0.4284 0.4833 0.6315
INITIAL SLOPES 1.3422 1.5108 2.0623
SUM SQUARES RESIDUALS  6.885D 02
N =25 DELX = 0.03125 XSHOOT = 0.250
X Y= 0 0.475/3 2%0.475/3
0.125 0.1639 0.1846 0.2519
0.250 0.3029 0.3411 0.4654
0.250 0.3029 0.3411 0.4654
0.375 0.3958 0.4457 0.6081
0.500 0.4284 0.4824 0.6582
INITIAL SLOPES 1.3457 1.5155 2.0677
SUM SQUARES RESIDUALS 1.609D-04
N =25 DELX = 0.03125 XSHOOT = 0.375
X Y= 0 0.475/3 2%0.475/3
0.125 0.1657 0.1860 0.2526
0.250 0.3072 0.3441 0.4667
0.375 0.4028 0.4701 0.6643
0.375 0.4075 0.4500 0.6099
0.500 0.4354 0.4870 0.6601
INITIAL SLOPES 1.3595 1.5265 2.0732
SUM SQUARES RESIDUALS  6.799D 01
N=15 DELX = 0.03125 XSHOOT = 0.500
X Y= 0 0.475/3 2%0.475/3
0.125 0.0363 0.0805 0.1980
0.250 0.0129 0.1170 0.3574
0.375 -0.1656 0.0768 0.4544
0.500 0.6212 -8.3976 -1.2045
INITIAL SLOPES 0.3648 0.7049 1.6394

SUM SQUARES GRADIENTS 1.050D 06
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TABLE V

EFFECT OF VARYING 4x

F N=15 DELX = 0.06250 XSHOOT = 0.500
2 X Y= 0 0.475/3 2+0.475/3 #
L | 0.125 0.1583 0.1812 0.2510
3 0.250 0.2873 0.3347 0.4649
g 0.375 0.3473 0.4450 0.6011
» 0.500 0.5551 1.0065 0.0971
' INITIAL SLOPES 1.3044 1.4881 2.0591

SUM SQUARES GRADIENTS 3.905D 03

vz ST

N=15 DELX = 0.12500 XSHOOT = 0.500
X Y= 0 0.475/3 2%0.475/3
0.125 0.1636 0.1843 0.2516 !
0.250 0.3022 0.3406 0.4652 ]
0.375 0.3944 0.4448 0.6249 :
0.500 0.4260 0.4838 7.1353
INITIAL SLOPES 1.3435 1.5136 2.0653 |

SUM SQUARES GRADIENTS 8.146D-02

3 N =15 DELX = 0.25000 XSHOOT = 0.500
E X Y= 0 0.475/3 2+0.475/3 '
¢ 0.250 0.3035 0.3413 0.4638
: 0.500 0.4302 0.4874 0.7246
INITIAL SLOPES 1.3500 1.5165 2.0533

SUM SQUARES GRADIENTS 7.961D-07

LY e w3




o <

s e B ool

3
#

o

St e

PR

W o -

.33

TABLE VI

EFFECT OF VARYING THE NUMBER OF LINES

XSHOOT = 0.500

N=15 DELX = 0.03125
X Y= 0 0.475/3 2%0.475/3
0.125 0.0363 0.0805 0.1980
0.250 0.0129 0.1170 0.3574
0.375 -0.1656 0.0768 0.4544
0.500 0.6212 -8.3976 -1.2045
INITIAL SLOPES 0.3648 0.7049 1.6394
SUM SQUARES GRADIENTS 1.050D 06
N=12 - DELX = 0.03125 XSHOOT = 0.500
X Y= o 0.475/3 2%0.475/3
0.125 0.1612 0.1824 0.2507
0.250 0.2967 0.3363 0.4631
0.375 0.3836 0.4381 0.6047
0.500 0.3944 0.5251 0.6659
INITIAL SLOPES 1.3249 1.4983 2.0586
SUM SQUARES GRADIENTS  2.130D 01
N=9 DELX = 0.03125 XSHOOT = 0.500
X Y= 0 0.475/3 2%0.475/3
0.125 0.1641 0.1848 0.2520
0.250 0.3032 0.3414 0.4656
0.375 0.3962 0.4460 0.6083
0.500 0.4289 0.4826 0.6585
INITIAL SLOPES 1.3470 1.5167 2.0685
SUM SQUARES GRADIENTS  2.326D-04
N=6 DELX = 0.03125 XSHOOT = 0.500
X y= 0 0.475/3 2%0.475/3
0.125 0.1644 0.1850 0.2522
0.250 0.3037 0.3419 0.4660
0.375 0.3969 0.4467 0.6088
0.500 0.4296 0.4835 0.6590
INITIAL SLOPES 1.3495 1.5190 2.0702
SUM SQUARES GRADIENTS 3.526D-09
N=3 DELX = 0.03125 XSHOOT = 0.500
X Y= 0 0.475/3 2%0.475/3
0.125 0.1660 0.1866 0.2533
0.250 0.3068 0.3448 0.4680
0.375 0.4009 0.4505 0.6115
0.500 0.4339 0.4876 0.6619
INITIAL SLOPES 1.3632 1.5318 2.0794

SUM SQUARES GRADIENTS

1.841D-16
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CHAPTER 4.0 TWO NONLINEAR EXAMPLES

4.1 Introduction

The linear problem covered in the last chapter was relatively easy to solve since only one
step in the Newton scheme was required tc obtain a solution. In nonlinear cases we have to be much
more careful about initial estimates and we must be sure of using an efficient numerical optimisation
scheme in order to find the optimum unknown values. It is believed that the method due to Powell
(1965) is one of the most efficient methods (see Section 2.3 for a further coverage of Powell’s method)
for minimizing a sum of squares of nonlinear functions and as such is used in most of our computations
presented here, the exception being the delta wing computations of Klunker et al. (1971) who used
the modified Newton scheme mentioned in Section 2.2.2.

The first example is a structural problem and as such has been solved by the finite element
method (Dixon 1971); MOL results are compared with the finite element solution.

The second example is a conical flow problem encountered in aerodynamics. We solve the
full Euler equations comprising five simultaneous partial differential equations and also determine the
location of the shock wave attached to the cone apex (see Fig. 4.3). A finite difference solution of the
elliptic equations would be very time consuming and the earlier methods of solving this problem con-
sidered the complete hyperbolic system using the cone axis as the time-like direction. Comparisons of
the MOL solution to the hyperbolic marching method (Babenko 1966; Gonidou 1968) are made. It is
found that MOL solutions are some fifty times quicker while obtaining results of equal accuracy. The
MOL results for a circular cone have been tabulated in AGARDograph 137 (Jones 1969) and have
served as standard reference tables for inviscid flow about circular cones.

Finally some resuits are shown from MOL solutions for flow about the compression side of
a delta wing at incidence to a supersonic stream. Again a comparison is made with a hyperbolic march-
ing method.

Other nonlinear examples are discussed in Jones, South and Klunker (1972).
4.2 The Simply Supported Square Plate
For this example we use the following notation

constant = tE/(1-+?)
flexural rigidity, Et3/12 (1-»?)
modulus of elasticity, = 2 X 10!°
plate thickness, = 0.002
number of strips used. h = /N
=u,
=v,
normal pressure. Varies from 0 to 80
=w,
=a,

v mid plane displacements in x and y directions
transverse displacement

R £ » " OHLT ZTEHUTOQ

substituted for w,, +w,,

step length used for integrating the MOL ordinary differential equations
strip width in y direction

o
”

h
v Poisson’s ratio, = 0.3
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.i The example is a structural problem which is defined mathematically by a set of rather 4

complicated nonlinear partial differential equations. These are

Y,

Uy, + Wy wy (v, +owyw, )+ (1)

.(uyy + Viy ¥ W Wy, oWy wxy) =0 (4.1a)

! Vyy + Wy w4 V(uxy + w, ny) + 1%(1-v)
| i
; '
3 i (Ve + Uy * Wy W W, W) =0 (4.1b)
3 ;
k| :
4 tE 5 5
DV’w = Q + — {[ux + l/zwx + u(vy + l/zwy)]
2

1-v i
- Wyt [vy + l/2w§ + v(u, + %w2)) Wyy
3 + (1-v)(u, + vy + w, wy)wxy} (4.1c) 1
3 l

subject to boundary conditions on the simply supported square plateo < x<1l,0<y<1

- AL P P

15 X =0 U=V=W=W, =0 (4.2a)
{ i
y=0 uUu=v=w=Ww, =0 (4.2b)
1 E
with lines of symmetry x = %4,y = . ‘

To use MOL, Equations (4.1) are written as differential equations of first order in x which is
the variable to be left continuous. We also for convenience, introduce a variable & = V2w (hence, on
the boundaries, o = 0), and suitably scale the dependent variables T = Cu, v = Cv, W = C*%w, & = C*a.
Then, dropping the bar notation, the Equations (4.1) can be written as the system of equations

B T e,

u, = p (4.32)
v, = q (4.3b) (
{
- w, =T (4.3¢)

-"':’J.wvﬂﬂﬂf 3537‘"5-.‘}':{'{"{9{*‘?““ .




o, = s (4.3d)

3- Iy = a - Wy, (4.3e)
#
3
] px = - [y + v(qy + wyry) + %(1-v)
:‘ '(uyy + qy + rwyy + Wy [y)] (4.3”
|
!
q, =- 2(1-»)7! [vyy + wyw,, +¥(p, +rr)] - p, - W,r, - rr, (4.3g)
Ds, = - Da,, + C*Q + [p + %1? + v(v, + %wi)lr,
+ [v, + %wl +p(p + %r)w,, + (1-v)[u, + q +rw]r, (4.3h)
Now Equations (4.3) are to be satisfied on each dividing line (except at y = o) which are

« numbered 0,1,2 . . . N say corresponding to increasing y. Thusy, = 0, yy = % and the strip width ‘
' h = 1/2N. Symmetry on y = 1 can be conserved by introducing image lines at %2 + h and % + 2h and :

. these lines are numbered N + 1 and N + 2. Then for symmetry
VN+k = 7 VN-k
ON+k = T AN-k
¢
R for k = 1,2 while for the other dependent variables the equality holds (e.g. Wy, = wn_i)-
? The partial derivatives with respect to y occurring in Equations (4.3) are replaced by the five
4 line difference formulas (2.17) fori= 2,3 ... N, while on line 1 we use formulas (2.19) and (2.20).
4

Now we can apply MOL by estimating p,q.r and s at each line i at x = 0. These estimates are
made by first obtaining a solution with Q near zero since at Q =0 weknowp =q =r =s =o0. We then
increase Q gradually and obtain initial estimates of p,q,r and s at x = o by extrapolation from previous
solutions; in our case quadratic extrapolation was used as soon as possible. We then improve the
estimates using Powell’s method in order that

© G,

12 +q>+u+s? (4.4)

at each line at x = % is minimized. The latter must be minimized since we require

o AN EIBNAARIER W o T GO 285
Tekr o .

r=gq=uss=o0
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[ Al

at x = % to preserve symmetry there. In the practical computation it turned out that weighting factors
had to be applied in (4.4) so that each term was roughly of the same order.

F N, 0=ty

The integration method used was Hamming’s (1959) predictor modifier corrector scheme of j
0(8x°) accuracy. Starting with N = 3 various step lengths 6x were used i.e. 5x = %4/m where m = 34,5,
6,7,8,10. This procedure indicated the step length 6x needed to give sufficient accuracy. It was found 1
that 8x = 1/20 was sufficiently small since these results differed only a little from 8x = 1/16.

We then used N = 4 lines (8x = 1/20) and compared the results with N = 3 for Q = 32. Some i
quantities were not sufficiently accurate, e.g. w,,, so we next used N = 5 and again compared results at
i Q = 32. Some of these comparisons are shown in Figures 4.1. It was found that, with N = 5, solutions
3 were rather difficult to obtain for Q > 32; this was due to the instability becoming more significant as
'} the nonlinearity of the problem increased (parallel shooting (Section 2.9) would have to be used to
- obtain solutions with higher Q). However using the one shooting range we obtained satisfactory results
with N = 3 or 4. Solutions at Q = 80 are compared in Figures 4.2 with a 9 element finite element
solution of Dixon (1971). It is seen that good agreement is obtained.

T seicninginbede,

i The time taken for the MOL solutions for some 40 values of Q between 0 and 80 was as
follows

o b i i i T

s

N=3 &x=—: 2.5 mins.

)
o

N =4, 6x-= —0 3.5 mins.

on an IBM 3032 computer.

4.3 Conical Flow Problems

The method of lines seems to be ideally suited to problems of this type since it is not clear
how one would solve the elliptic system by finite difference methods. The previous finite difference
methods (e.g. Babenko 1966) solved the hyperbolic system of equations by a marching technique using
the cone axis z (see Fig. 4.3) as the time-like direction. But these marching methods were rather slow,
for example, Gonidou (1969) reported one hour computation for a certain configuration and, as many
solutions for different configurations were required, it seemed that a more efficient computational
technique was needed. MOL turned out to be very efficient with between 5 and 20 seconds needed for
a solution. For flows about circular cones a set of tables of MOL results has been published by Jones
(1969); results for some 1200 configurations are listed there.

PP N

i

The physical problem is shown in Figure 4.3. In supersonic flow there is a shock wave
attached to the tip of the conical body and the flow field behind the shock is such that quantities
along any ray emanating from the tip are constant. We wish to find the shock wave shape and the flow
field variables between the conical body in supersonic flow and its attached shock wave. A cylindrical
co-ordinate system (z,r,0) is adopted with the z axis along the axis of the conical body (which may for

example be a circular cone).

i S T

2 e s

The equation of the given body can be written in the form, r = zG(9) say, and we let the
equation of the unknown attached shock wave be r = zF(6). The full three-dimensional equations of
motion (momentum, continuity and energy conservation) can be written in matrix form as

v

oX 1,4 oX
: AA—+B — +C—+D =0, 4.5
' 0z or c o0 (4.5)
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where A'B’'C’ are (5 X 5) matrices, D' is a column vector and X is also a column vector given by

e
i
oo £ < ¢

where u,v,w are the velocity components in the (z,r,0) directions, respectively, p is the pressure and p
the density. The matrices and the vector D' consist of elements which are functions of u,v,w,p, and p;
their exact form can be found in Jones (1968). A cross section (z = const) of the flow field is shown
in Figure 4.4a; here the flow and body are assumed to be symmetrical about 6 = 0, 7 as is usually the
case. The boundary conditions to be satisfied are the Rankine-Hugoniot relations at the shock wave

which can be written in the form
X = f(o,y M. 8,F,F), (4.6)

where f is a column vector whose elements are functions of the listed arguments. The first three
arguments in (4.6) are a the angle of incidence which is the angle that the direction of the free stream
makes with the z axis, vy the ratio of specific heats and M, the free-stream Mach number. Since these
three arguments are known for a given problem it follows that the elements of X are known at the
shock once the equation of the shock r = zF() is known. F' is found from (2.17a).

On the body the normal velocity should be zero and can be written
uG - v + (1/G) (dG/dg)w = 0. 4.7

Now it is known that the equations of motion (4.5) can be reduced to two dimensions since
the flow is conical. A suitable transformation to do this and also one which makes the boundaries

easier to handle is given by

X = 2z,
¢ = [r - zG(0))/z[F(9) - G(9)],
¢ = 6.

It is now seen that the body r = zG(#) and shock wave r = zF(0) are transformed to the lines { = 0 and
£ = 1, respectively, see Figure 4.4b. The equations of motion (4.5) are transformed to

B(0X/0f) + C(0X/d¢) + D = 0, (4.8)

where B,C are (5 X 5) matrices and D is a column vector. The term 9X/0x is omitted from the above
equation since the flow is conical and 0X/0x is zero. Now we can consider the equations at unit
distance x = z = 1. Hence the problem is reduced to that of finding solutions of (4.8) in the region

o ‘ e T Y I R T R T
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0<¢ <1, 0< ¢ < 7 (assuming symmetry) subject to boundary conditions (4.6) at { = 1 and (4.7) at
£=0.

The method of lines is applied in the ({£,¢) plane; symmetry conditionsat ¢ =0andat¢ =«
are satisfied by introducing image lines in the usual manner. An estimate for F(¢) at each of the lines
is made, F'(¢) is obtained from (2.17a) and substitution in (4.6) gives X({ = 1). Equations (4.8) are
next reduced to ordinary differential equations by writing 0X/0¢ at each line in the finite-difference
form (2.17a). Integration of these ordinary differential equations is then made from § =1to & =0
where Equation (4.7) must be satisfied at each dividing line. The shock shape, i.e., F(¢) is changed by
Powell’s method so that conditions (4.7) are satisfied to a required accuracy. It was found convenient
in this example to represent F(¢) by a cosine Fourier series E;‘;oFi cos ip, say, where m is 1 or 2 for
the circular cone at small angles of incidence; by this representation the number of unknowns is

reduced and so the work involved in finding the partial derivatives in (2.11) is reduced and also Powell’s
method is more efficient.

It is important in this example to have a good estimate of the shock shape F(¢). To be
always sure of a good estimate, a situation is first considered for that of a circular cone r = G(¢) = const
which is at incidence a = 0 deg. For this case the flow is axisymmetric and the problem is easily solved.
A situation is next considered which has a small perturbation from the circular cone at zero incidence
(either a small change to the body shape G(¢) or a small change in incidence may be considered). In
this case the estimate for F(¢) is taken to be that obtained for the first case of the circular cone at zero
incidence. The solution for this small perturbation is then found by the method of lines. Next a larger
perturbation of body shape or incidence, which is proportional to the first perturbation, is considered
and F(¢) is estimated by extrapolation from the two previous results. And so the technique can be
continued for larger proportional perturbations and always a good estimate for F(¢) is available by
extrapolation from previous results at the smaller perturbations. For example, to find solutions at
incidence for the circular cone whose semi-apex angle is 8, a solution is first found for « = 0 deg., then
successively for «/8 .= 0.01, 0.1,0.2,0.3, ... .

By the method of lines it was possible to generate solutions for the circular cone for relative
incidence a/0 . as high as 1.4 in some cases, which was higher than relative incidences at which any
other theoretical solutions were available. The only other methods available which gave solutions at
relative incidences greater than unity (up to about 1.2) are methods which solved the full hyperbolic
Equations (4.5) [Babenko 1966, Gonidou 1968] and these methods are 50-100 times less efficient
than the method of lines.

The quality of the results for a circular cone can be seen in Table VIII which compares
surface values and shock shape F(¢) on a circular cone obtained by MOL with §¢ = 22.5° and §¢ = 0.1
and by the method of Babenko et al. (1966) with §¢ = 11.25 and 6¢ = 0.05, which solves the full
hyperbolic Equations (4.5).

Results for a non circular cone are shown in Figure 4.5a and are compared with experimen-
tal results. The cross section of the body in this case is shown in Figure 4.5b.

Finally a surface pressure result of Klunker et al. (1971) for the delta wing problem
(compression side) is given in Figure 4.6. In this problem, the cross section of the wing is flat, and the
shock wave is attached not only at the wing apex, but also along the leading edges which are swept
back 50°. The total velocity is everywhere supersonic, but in this problem the conical cross flow is
also supersonic in a region adjacent to the leading edge (X = 1 on Fig. 4.6). 1t is interesting that MOL
can be used without difficulty in this case, even though the conical equations are of mixed type; MOL
gives an excellent prediction of the constant pressure which occurs in the hyperbolic region (for the
flat wing) as well as in the elliptic region near the wing center line (X = 0 on Fig. 4.6), where the cross flow is
conically subsonic. In Figure 4.6 the MOL results are compared with thase of Voskresenskii (1968), who
used the three-dimensional, fully hyperbolic, finite-difference method. It can be seen that the two methods
agree well, and that remarkable accuracy is obtained by MOL with only one intermediate line between the
wing center line and leading edge (i.e., N = 2). Further MOL results for delta wing problems are given
in Klunker et al. (1971), including comparisons with experiment and other calculative methods.
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It may be noted in Figure 4.6 that Klunker et al. in applying MOL to the deita wing
problem, did not use constant strip widths but took more lines in the region where there is more
variation in quantities, i.e., near X = 0 in Figure 4.6. This is possible in their case since they approxi-
mate derivatives by fitting a fourth-order polynomial to five adjacent points near to the point at which

the derivative is required.
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F Q:-m
SHOCK WAVE EQUATION r = zF(6)
3 SYMMETRY BOUNDARY CONDITIONS (4.6)
; TO BE SATISFIED
4 BOOY EQUATION r = 2G(8)
= BOUNDARY CONDITION {4.7) 7|
B 1 TO BE SATISFIED
1 SYMMETRY EQUATIONS (4.5) TO BE
3 SATISFIED IN THIS REGION
8=0
3 BOUNDARIES ARE TRANSFORMED TO A SIMPLER
» 1 FORM BY THE TRANSFORMATION
|
% X = 2
r—z G(6)
t- 2(F(9)-G(6))
¢ =0
i GIVING THE REGION IN FIG. 4.4b
FIG.4.4a CROSS SECTION z=CONSTANT OF THE FLOW FIELD; CONICAL FLOW PROBLEM
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: €=l l
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TABLE VIl

COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN PRESENT
THEORY AND THE THEORY OF BABENKO ET AL. (1966) FOR CIRCULAR CONE

¢ 0 225 45 67.5 90 112.5 135 157.5 180

uy 1.3028 | 1.3167 | 1.3571 | 1.4205 | 1.5026 | 1.5956 | 1.6906 | 1.7741 | 1.8123

e

ug 1.3026 | 1.3165 | 1.3572 | 1.4217 | 1.5048 | 1.5989 | 1.6936 | 1.7711 | 1.8129

3 \/] 0.6075 | 0.6140 | 0.6328 | 0.6624 | 0.7007 | 0.7440 | 0.7883 | 0.8273 | 0.8451

[ a———

? Vg 0.6074 | 0.6139 | 0.6329 | 0.6630 | 0.7017 | 0.7456 | 0.7897 | 0.82569 | 0.8454

wy 0 0.1785 | 0.3464 | 0.4862 | 0.5890 | 0.6358 | 0.6205 | 0.4319 0 "

Wg 0 0.1792 | 0.3446 | 0.4832 | 0.5818 | 0.6285 [ 0.6075 | 0.4463 0 !

T SR

p; 2.6838 | 2.5058 | 2.0418 | 1.4619 | 0.9277 | 0.5447 | 0.3172 | 0.2426 | 0.2522

L SRR

Pg 2.6842 | 2.5062 | 2.0423 | 1.4596 | 0.9282 | 0.5434 | 0.3182 | 0.2436 | 0.2508

Py 4.7758 | 4.5474 | 3.9284 | 3.0946 | 2.2362 | 1.5288 | 1.0391 | 0.8580 | 0.8819

Pg 4.7759 | 4.5475 | 3.9289 | 3.0909 | 2.2368 | 1.5260 | 1.0411 | 0.8603 { 0.8785

o Bi¥ bad

F, 0.5919 | 0.5943 | 0.6029 | 0.6168 | 0.6395 | 0.6657 | 0.6960 | 0.7075 | 0.6920

PR 5

Fg 0.5920 | 0.5947 | 0.6028 | 0.6173 | 0.6388 | 0.6665 | 0.6949 | 0.7068 | 0.6917

W

g

Subscripts: J Values obtained by present method

-y

B Values obtained by Babenko et al. (1966)
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CHAPTER 5.0 ELLIPTIC EIGENVALUE PROBLEMS

5.1 Introduction

Although the main advantage of the method of lines has been in solving boundary value
problems, particularly the rather complicated nonlinear types mentioned in Chapter 4, we feel that for
completeness some coverage should be given to eigenvalue problems. Thus in this chapter we consider
the method of lines solution to Helmholtz equation in a rectangle and compare MOL results to the
exact solution.

The instability problems mentioned earlier (Section 3.3) are again encountered in the
eigenvalue case. However it is illustrated that accurate results can be obtained for the smaller eigen-
values using the usual five line difference scheme (2.17). We first consider the three line scheme as this
gives better insight into the stability and accuracy expected.

The problem considered here has a linear operator but nonlinear operators would be handled
in a similar manner.

5.2 The Method of Lines Applied to Eigenvalue Problems

Consider Helmholtz’ equation in a rectangle o < x < a, 0o <y < b. Lines are drawn parallel
to the x axis and numbered 0,1, ..... N. Because of symmetry we consider only the region
0<x<a/2 0<y<b/2. Lineso, N correspond to y = 0 and y = b/2 respectively. Writing h = b/2N
and replacing 92 ¥/9y? on the nth line by the three line finite difference scheme (2.5), for example, we
have

dpn ¢n+1 - 2¢’n + wn—l
— + + k¥, =0 (5.1a)
dax h2

where

=p, n=12...N -(5.1b)

We apply symmetry at y = b/2 by making yy,; = ¥\ ;. The initial conditions at x = 0 are

Y,=0 n=12...N

We can integrate (5.1) from x = 0 to x = a/2 provided we have values for k and for the
gradients p, forn = 2,3 ... N. The gradient p, is kept fixed throughout since we want to avoid the
trivial solution § = 0. Note that this fixing of a gradient # 0 may prevent finding the eigenvalue
corresponding to an eigenvector which has zero gradient at that point. For example if we fixed
Pn-1 # 0 when N = 3 then we could not calculate the eigenvalue corresponding to

. max | 3wy
¥ = Asin— sin—
a b

e ———y
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since
dy,(x = 0) mr  S™n  Amz  3n(N- 1)h
= A — sin = sin =0
dx a b a Nh
when N = 3. By increasing N to 4,5 . . . ., though, we could calculate the eigenvalue. Choosing p; # 0

for this particular problem does not lead to any eigenvalue loss.

Since the problem is linear for a fixed k we proceed as follows. Fix k in an outer loop. In

N N
the inner loop calculate p; . . . . py 50 that the sum of squares of residuals Z ri2 |:E z pi2 at x =a/2
i=1 i=1

is minimized. The generalized least squares minimization leads to

ark

kaF i=2,....N (5.2)

N
2L = 6Fj=—2

N N al'k ark
j=2 k=1 aFl aFJ

where F; = p; (x = 0) and F; is the change to be made in F; so that El'i2 is minimized. Since r, is linear
with respect to (F, . ... Fy), (5.2) is exact and the partial derivatives can be found exactly (within
round off errors) by differences

Brk Tk(Fz "’9Fi + AFi"“FN) - Yk(Fz ""Fi!"'FN)
— = 5.3
JF, AF; (5-3)

where AF; is theoretically any value but the authors usually select 10‘6Fi if F; # 0 since a large dis-
turbance to F; may prevent integration to x = a/2 to find r,. Also if the operator is non linear then
(5.3) is a good approximation only if AF; is small. The first estimate of (F;) is not too critical since
the above method theoretically yields the exact minimum in the inner loop. However we have to
select values which enable us to integrate to x = a/2 without the solution blowing up. In the example

of this cha J)ter we consistently set F; =F, =....Fy =1 at the start of the inner loop, used
AF; = 107°F;, and did not encounter any difficulties. F,; was then kept fixed on 1 and integrations
made using the small perturbations to F, . ... Fy in turn. Having found the partial derivatives accord-

ing to (5.3) we then substitute into (5.2) and by Gaussian elimination find 6Fj.

In the outer, k, loop we can either select values for k? in some consistent manner,
1 = ¢(d)e (5.4)

say, or we can carry out a one dimensional minimization. The method used by the authors is a com-
bination of both these possibilities. First ¢ and e are selected (for example we chose ¢ = 0, e = 65 in
the square membrane problem to follow) and the step d is selected in a manner depending on the
problem at hand (for the square membrane we chose d = 1 since we knew there were many roots
expected in the range o < k? < 65). For a particular N we then plot R (= (& r; 2)%) against k2 The
function R will have a cusp at each root (Fig. 5.1 for example) thus giving approxunatlons Kk, k§ R
to the eigenvalues. We may then, if required, calculate the roots more accurately by minimizing Er
with respect to A\ where A is given by
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k2 = w(k? + k2) + (k] - k2)sin) (5.5)

10

and k.l2 is the ith eigenvalue. kig and kif are lower and upper limits on ki2 chosen from the graphical
inspection above. The authors preferred this semi-automatic method but a completely automated
method could be devised in which the computer would locate each root approximately and then refine
the approximation.

If we suspect the presence of multiple roots which numerically are roots which may be very
close but not coincident we can then minimize

J_erzl(kiz - k2) (5.6)

in the ranges k.2 < kI < k.2 and k.2 < k? < k.2 where k.2 is the eigenvalue already found. Triple roots
io i, iA iA i il 1A
can be found in a similar manner.

The method has been described above using a three point approximation to the derivative
ll/yy. But in order to use as few lines as possible it is better to use finite difference approximations
having greater accuracy. Application in this case is exactly the same as outlined above.

We next apply the method to a square membrane using the three point scheme (for which an
analytical solution is available) and then use a five point scheme for which a semi-analytical solution is
available.

5.3 Helmholtz’ Equation in a Square

To investigate the accuracy, stability and convergence of MOL we consider a simple example
with a known solution and solve the MOL ordinary differential equations first analytically and later
numerically.
5.3.1 The Three Line Scheme

We consider a square of side 7 in which we want to solve (y2 + kz)w = 0 subjectto ¢ =0

on the boundary. The MOL representation of Helmholtz’ equation using the three line scheme can be
written

Vner ~ 2¥p + Yoy
+

5 + Ky, =0 (n=12...N) (5.7)
h

"
¥

where h = #/2N and lines are considered parallel to the x axis. Lines o, N are equivalent to y = 0 and
y = 71/2 respectively. The primes denote differentiation with respect to x. We consider only the region
0 < x €7/2, 0 <y < 7/2 because of symmetry (or antisymmetry).

The boundary conditions are

x=0 ¢y, =0 (n=12...N) (5.8a)
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4 . , ) :
;. X = —2-: V¥, = 0 for symmetry (n=12...N) }
¥ '
‘ for ¢, = 0 for antisymmetry] (5.8b) I
1 .1_
" l YN+ = ¥Un-, for symmetry
3
[or Yne1 = - ¥n., forantisymmetry] (5.8¢) i

U, =0 (5.8d)

It can be shown that the general solution to (5.7) subject to the boundary conditions (5.8¢)
and (5.8d) is

s o et <o >
)
4
t
—_

. nm7 .
Y, = z sin —— [Ay, sin g, x + By, cos yx] (5.9)
m=1,3,5... 2N
"-' where przn = k2 - (4/h?) sin* m7/4AN. Since the solution is real it follows that A, is imaginary if

k < (2/h) sin mn/4N. We now apply the remaining boundary conditions (5.8a) and (5.8b) giving

é
3 nmw
Zsin—B, =0 (n=12...N) (5.10a)
i
§
and
3
“ My My
H ity sin% [Am cos —— - By sin—2—] =0 (n=12...N) (5.10b)

The system (5.10a), assuming that det (a,,) # O where a,, = sin n(22-1)7/2N, shows that B; = B,

H =...=B,y_; = 0 and the system (5.10b) becomes i
! !
U
. nmm
E sin —ZF cos '2— Ay = 0 (5.10¢)

b
l i

; For a non trivial solution we require u,A;,, ¥ 0 for some m (see Equation (5.9)) and hence require the

a determinant of system (5.10c) to be zero i.e.

i

. * i
- T T T ¥ RIS LR R o s il “ 4
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2N-1 T
I cos u, — (deta,,) =0
m=1,3,5 ... 2
or since we assume det(a,,) # 0
T
COS#mE =0 form=1,3....0r2N-1 (5.11)
and so u, = p where p is one of the integers 1,3,5.... Thus

4 my
k? = p? + —sin®? — P

135...
5.1
2N mo=13,...2N-1 (5.12)

giving the MOL analytical approximation to the exact eigenvalues which in the symmetrical case are

1,35...
135... (5.13)

ke )
non

K = p? + m?

Since h = n/2N the difference is

16N2  768N*

- = + O(N™%) (5.14)

»  16N? Im?a?  mipt m*s?
m + ...
T

indicating accuracy of 0(h?) as expected. It can be seen from (5.14) that for the smallest eigenvalue
(m = 1) the error will be <10 3 if N> 15. Form = 3 using the same number of lines the error would
increase by a factor 81 and higher eigenvalues would rapidly increase in error. Values of k?-p? found
from the three point scheme, formula (5.12), are listed in Table IXa for N = 3,4,5,6,7 and 8. This
table illustrates that accuracy for m = 1 is fairly good when N = 8 but that higher eigenvalues are
poorly approximated.

The conclusion of this subsection is that many lines have to be used with the three point
scheme in order to obtain a reasonable accuracy even for the smallest eigenvalue. Using such a large
number of lines would undoubtedly lead to a large instability when applying MOL numerically and so
we seek a difference scheme which is more accurate than the three line scheme. This will enable us to
use fewer lines and so help to minimize the effect of the instability. In the next section we next
consider such a scheme.

Note that the eigenvector for the three point scheme is

. . nmw . .
¥y = Asmpxsm-zT = Asinpxsinmy,

which is exact in this case.

TRy,
v

LAl e
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5.3.2 The Five Line Scheme

In this case y,, in Helmholtz’ equation is replaced by formula (2.17b) on interior lines and
by formula (2.20) on the line adjacent to y = 0. As with the three line scheme the resulting problem of
Iinding the eigenvalues can be reduced to finding the eigenvalues of a matrix. However these cannot be
found in closed form as before but are found numerically.

Applying the five line scheme to Helmholtz’ equation results in a set of ordinary differential
equations of second order in x written at each line 1,2 . .. . N. On seeking a solution of the type
¥, = a, sin px we have

h? 2-3 175
? (k2 - pz)al - 6 + T (33 - ﬂl) - 1/1(34 - al)
0.125 1.25
+ 3 (a5 - a;) + —3—(30— a;) =0 (5.15a)

4 1
h*(k? - pYJag + ey +an) - 280) - To(Bne2 ¥ an-y - 28) = 0

n=23...N (5.15b)

with boundary values a, = 0, ay 4| =ay_; and ay, = ay_, for symmetry. To give a non trivial
solution the determinant of the matrix of system (5.15) should be zero. For example using N = 3 we
require

= =
7 5 3.5
T_-— — —_—
6 6
w|t n 8|,
1 3 12 3
1 8 5
"6 3 T-3
| J

where T = h2(k? - pz) i.e. we require the eigenvalues of the above matrix written without T on the
main diagonal. If A{, A, .. .. Ay are the resulting eigenvalues then
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Now p =1,3,5. ... to satisfy the boundary conditions , = 0 at x = 0 and {, symmetrical about

x = w/2. Thus the eigenvalues k? are determined from (5.16). Values of kz—p2 from Equation (5.16)
are listed in Table IXb for N = 3,4,5,6,7 and 8. This table illustrates the accuracy to be expected from
the five line scheme since the exact k?-p? should be equal to m? form =1,3,....2N-1. The accuracy
of the eigenvalues corresponding to m = 1 and 3 is very good while the m = 5 and 7 eigenvalues have
about 1% accuracy at N = 8. Higher eigenvalues are poorly predicted. Note that convergence is rapid,
for example the errors for the m = 5 eigenvalue are about 30%, 5%, 3%, 1.5% and 0.8% withN =4,5,6,7
and 8 respectively. This feature is to be expected since the error is O(N"').

; To compare the above MOL results with those obtained by finite differences we can use the
1 formula given in Isaacson and Keller (1966) for the finite difference solution of accuracy 0(h?) using
i an N X N mesh on a quarter of the square of side 7 i.e.

i

16N2 mw
k? = sin2 LA +sin? —
22 4N 4N

c.f. Equation (5.12). For example, to achieve 1% accuracy for the eigenvalue corresponding tom = 5
and p = 1 would require a 22 X 22 mesh.

5.3.3 Numerical Solution by the Five Line Scheme

The three line and five line schemes, solved analytically above, illustrate the accuracy one
might expect to obtain using MOL. We now proceed to the numerical procedure for solving the
equations and use the five line scheme. But first we inspect the numerical instability which is similar
to the instability encountered in boundary value problems (see Section 3.3).

_z v i

: As can be seen from the three line analytic solution (5.9, 5.10) we should have B, = 0 and

; A, = 0 except for the one A, say a, corresponding to u,, =p i.e.

i

{

" . nmm |
=a sin —— sin
n 9N sin px

, is the exact solution for three point difference scheme. However numerically, since we treat the
k problem as an initial value problem, we will not have exactly B, = 0 and A, = 0. Instead these will
ol take on small values perhaps of order 10~!%. And so, unwanted terms in expression (5.9) for Y, will
1 be present and cause the inherent instability. This is likely to be significant if k < (4N/7) sin m7/4N
; since then there is a term present in (5.9) containing the factor
1
4 16N? mnm Y
H sinh sin? —- k| «x
3 x? 4N
.}

which form = 2N-1is

44 < et A MRS S

-~

16N? 16N? va
sinh cos? —— - k2| x =~ sinh -k x
e aN )

LA B
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and when seeking the eigenvalue corresponding to m = 1 for example, with N = 8 and p = 1 say, a
factor can be produced of size sinh 10x. At x = 7/2 therefore, even though A,y _, may be small, the
solution could be affected by this factor. Clearly then the number of lines we use cannot be too large
and it will be seen later that the N = 8 results are slightly affected by the instability while N = 7 resuits
appear unaffected.

In the previous analytical solution of the MOL ordinary differential equations we obtained a
solution explicitly involving x in the form sin px (p = 1,3, ....). Our choice of integration step length
6x will now determme how accurately this factor is determined. Suppose we require the error in sin px
to be less than 1073 at x = 7/2. The fourth order Runge Kutta and Hamming’s predictor modifier
corrector (Hamming, 1959) methods used in the computations yield errors

E <

™ e }

on each step where x < £ < x + 6x and f is the function of x being approximated. Integration from
0 to #/2 in n steps therefore gives a total error

k3 5 p’

2n 120

from which follows n > 3p®/4 or, for p = 5, n > 24. Since this is an upper bound on the error it was
decided to use n = 20 steps from 0 to /2 knowing then that this would produce sufficiently accurate
results forp = 1,3 or 5.

Er <n

It was decided to seek eigenvalues in the range 0 < k? < 65 using N = 3,4,5, . . . as high as
possible before inherent instability swamped the solution; this turned out to be N = 9. Since we
expected a large number of eigenvalues in the above range and also some double and triple roots we
selected an increment 8k? = 1 to locate roughly the elgenvalues by the process mentioned earlier, see
Equation (5.4). The resulting plots of (21-L )" against k? are shown in Figure 5.1 where r; is the residual
in y; at x = 7/2 after carrying out the minimization (5.2). The computation time forN=3,4....8
inclusive was 2 mins on an IBM 3032 computer.

The figures show that some roots are repeating for all values of N and therefore are reason-
ably accurate. Other roots however are not repeating and these are poor approximations to exgenvalues
For example, with N = 3, m = 5 and p = 1 we should have k? = p? + m? = 26 but obtain a root k? ~14.3
which is consistent with values obtained in Table IXb. Having obtained these approximations we then
locate the roots more accurately by minimization using Equation (5.5).

If we suspect double or triple roots, for example near k? = 50, we find one root in the usual
manner and then minimize the function shown in (5.6).

Table IXc lists the values of km% corresponding to (m,p) = (1,1) (3,3) (1,7) (7,1) and (5,5)
obtained by this technigue for N = 4,6,7 and 8. It can be seen that the values are consistent with those
of Table IXb (add on p“ to those values listed where p = 1,3,5,7).

The N = 8 solutions are affected by the inherent 1nstab1hty This is demonstrated by Er
being as large as 0.0015 when k? = 2,0032. The next eigenvalue k3 is better than that predicted i m
Table IXb and therefore is likely to be a fortunate effect of the mstablhty The residuals in the (3,3)
mode were much smaller than those of the (1,1) mode; this is caused by greater instability in the latter

case.
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The accuracy of the results can be seen to be very good for the (1,1) mode while for the
higher modes the maximuni error, excluding m = 7, is about 0.8%. The modes corresponding tom =7
are not listed for N < 8 since they clearly are not very accurate even when N = 7 (Table 1Xb). The
(1,7) mode is not as accurate as the (1,1) mode — greater accuracy for the (1,7) mode would require a
smaller 6x.

The local minimizations used to produce Table IXc took about one min. on an IBM 3032.
Powell’s (1964) one dimensional minimization was used.
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TABLE IXa

EIGENVALUES k?-p? FOR THREE LINE SCHEME GIVEN BY FORMULA (5.12)

m=1 3 5 7
N=3 0.9774 7.30 13.61
4 0.9872 8.01 17.93 24.95
5 0.9918 8.35 20.26 32.18
6 0.9943 8.55 21.63 36.73
7 0.9958 8.67 22.48 39.72
8 0.9968 8.74 23.06 41.76
EXACT 1 9 25 49
TABLE IXb
EIGENVALUES k? —pz FOR FIVE LINE SCHEME GIVEN IN FORMULA (5.16)
m=1 3 5 7 9 11
N=3 1.0015 8.511 13.28
4 1.0001 9.461 16.74 30.1
5 1.0000 9.150 23.64 30.6 50.4
6 1.0000 9.046 25.66 37.3 54.1 75
i 1.0000 9.014 25.42 46.3 56.5 83
8 1.0000 9.003 25.21 49.34 65.9 86
EXACT 1 9 25 49 81 121 i
.
L
TABLE IX¢ }
B
NUMERICAL EVALUATION OF THE EIGENVALUES k:,p OF HELMHOLTZ’ ,
EQUATION IN A SQUARE OF SIDE » ;
2 2 2 2 2
kI 1 k33 kl 7 k7| k55
N=4 2.0001 18.461 49.934
6 2.0000 18.046 49.934
7 2.0000 18.014 49,933 50.41
8 2.0032 18.001 49.940 50.34 50.20
EXACT 2 18 50 50 50

P L




(m,p) ON k? AXIS REFERS T

d

EIGENVALUE k’ FROM TABLE IXb

: .68 -
I
=" ~
; CALE X EXACT ROOTS )
3 30¢ s - \ D DOUBLE ROOT J 30 i
3 SCALE \ T TRIPLE ROOT :
% . i
20 3 /\\ -JZ.O
5 7 - /‘\ N=8
; \ VARVANYAR ;
% 10kt o s 4 \ s \ / \ ;1.0 ‘i
9 e \ [ 3 MY ,. :
3 e, o i
. o \.\ ./ \ o N / |
1 o b—x Ny * x/ \ NS ;
' ) 300,3) (33) (1,5)(5,1) 3515,3) (TI,7N55)  (7.3X3.7) !
‘ SCALE, {30
! scue | £\ °
g 20} / \ Pl 120
E | . / . N=T |
' ‘ \ \ / ™ /‘ AN -
1l
i 101% %, \. ! ./ \. S .\ 1.0
/ \'\ \/ N/ oo 05
0 -—x/ b X \J. \,’/\’)\
0 B3 {33) {1,5)(5,) (3,515,3) (7,0 (7085 (73) (37 _{
2.5
2ok SCALE o 20
-— \ :
% / \ /' N=6 |
o 4.5
'3 2 / '\\ ./.’.-.‘\'\
10 \ ‘/. % ./ / . 1.0
[ ]
et \ \ [ ~
o N o 0.5
oY / I \S NSNS
0,0 @3001,3) 33) 1,5)(5,) (35053 (7.1) (7,3) (47455 ©O.0) 37 (75)
201 SCALE SCALE " 2.0
. AN N=5 1.5
L ] / \
10 \ /f‘\.\. ;l 0
ot+— ———l .\ \ll ’.M*‘__o ﬂ
u, I) (3 N03scare (3 3) (s, n(u 5 (7,0 (35) (73) 5,5(.,7) (75) (3,7 |
/o‘\ —H1.2 g
10y . \ ~ N=4 110 ;
8 SCALE_ / \ dos | ]
6 \ ._._ Hos |
abb s ? \ ' Moa
[ ]
2t \ \ / . \'\/ Ho2
Of—x x x *¥—0
ich (3,00,3) 3 3) 0,5) m) 3, ) 73 (5, 5) (I 7 (7 5) (3,7
. s 41.0
SCALE / ‘\ Ne3 08
o = b L9
SCALE - \
s&\ \ —-408
° AN
4 /\ \ ./. \.\‘ 0.4
2} ./"‘\ )t \ '\ / N Ho2
[} .‘
ol— _'_.‘!. _'AL_P . ‘?_.TJ,%K_ILIQ kz
0 45 50 55 *
i (3, uu 3) (5, n 13,3) <5 n u ) (3, 5) (%.5) w7 3 (87
FIG. 5.1 RESIDUALS (Zr?)* vs. k2 FOR SQUARE OF SIDE 7.




FE e e

Ny s T

v

Gy e e b fan

s

Loy

-69 -

APPENDIX A
The Method of Integral Relations

As mentioned in the Introduction, there is another semidiscrete method which has been
widely used in aerodynamic problems, called the method of integral relations (MIR). Holt (1977)
reviews the aerodynamic applications of the method, but theoretical treatments or studies of asymptotic
convergence are rare.

The method is usually applied to systems of first-order partial differential equations. Asin
MOL, the region is considered to be divided into strips which are parallel to one co-ordinate, x say. The
equations are partially integrated with respect to the other co-ordinate, y, to obtain an approximate
system of ordinary differential equations. The partial integration is performed explicitly by assuming
an appropriate y dependence of the integrands. Most applications have used for this purpose a polyno-
mial whose degree increases proportionally to the number of strips. The algebraic development
required for this procedure becomes very cumbersome for N > 2, so several investigators have used a
linear y dependence from one line to the next in order to obtain a simple recursive form for a system of
ordinary differential equations. We will consider the application of the latter procedure to the example
of Section 3.3, since an explicit solution can then be found.

First the substitution §, = u, Yy=-vis made in Equation (3.4) to obtain the Cauchy-
Riemann equations

= Q; vy +u, = 0. (Al)
With the polygon approximation for the y dependence, the partial integration with respect to y yields

, , Va+l = Vn
Yo(upey + up) - -'T" =0, (A2)

) , Up+p = Up
Ye(vp + vpe1) + T n =0, (A3)

where the notation is similar to that introduced in Equations (3.8) and (3.11). Differentiation of (A2)
with respect to x and manipulation yields:

" n 1 1
Ylupey + 2up + up ) + h—z(unﬂ - 2uy *upy) =0, (A4)

producing a tridiagonal system for the x derivatives.

The solution of the above system is in the identical form of Equations (3.20) and (3.22),
except that

lml = (2N/b) tan (mn/4N), (Ab)

R TR PP B
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"2b2 "sz
coshf¢ = (1 + — 1 - (A6)
4N? 4N?

From Equation (A5) we see that the largest eigenvalue is

Myn-p = 8N?/mb, (A7)

giving Equation (3.25) for the instability factor in y/, (%) = u,(%4). Expansion of the hyperbolic cosine
function as in Section 3.4 shows that the MIR discretization error is 0(N~2); but MIR is clearly inferior
to MOL from the viewpoint of the size of the eigenvalues u,,. That is, the MOL eigenvalues grow
linearly with N, while the MIR eigenvalues are quadratic in N. Further, the extra complication of the
tridiagonal system for the x derivatives has been added without gaining the benefit of decreased
y-truncation error, contrary to the scheme of Appendix B.

.
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APPENDIX B
Tridiagonal MOL Systems With Accuracy O(N 4)

As alternatives to the five-point difference schemes (2.17) we present here two schemes with
the same accuracy O(N~4) which involve only three adjacent lines. The schemes are not general but can
be derived in certain cases as follows.

Poisson Equation

We have in the notation of this paper from Taylor-series expansions

LR
Ynet = 20n * ¥noy = h? + = + 0(h%) (B1)
ay2 12 ay
and also
32¢n+1 az‘pn az‘l’n—l 34\0“
-2 + = h? + 0(h%). (B2)
dy? oy? oy? oy*
On eliminating a4.p,,/ay4 from (B1) and (B2) and substituting
Yy %y
= - + f(x, ¥x) (k=n-1,n,n+1) (B3)
dy? ox?

from Poisson’s equation, we obtain

1 ” n n -
(Ve * 1097 + g y) + h 2(Unet = 2¥n * Vny)

1
= '1—2'(f(x’ yn+1) + 10f(x’ yn) + f(x) yn—l))v (B4)

giving a tridiagonal system of equations with accuracy o(h*) i.e., O(N“‘).

In fact the system (B4) can be solved analytically in certain cases and in particular we refer
to the example of Section 3.3 and obtain the solution. It can be shown that this solution is identical
to (3.20)-(3.22) except that




g

TN LT

2l g B e i

}oN,

5 e B 4

s

R L

N L) (B5)
Hn = T SN 35" 4N
and
5 2b2 2b2
coshf = 1+ ="} /(12 (B6)
12 N2 12N2

With this scheme the y-truncation error is reduced by two orders of magnitude compared to (2.5)
while the largest eigenvalue y,y | is increased only by a constant factor of about/(1.5). We may
expect to obtain results of accuracy comparable to the five-point scheme (2.17).

First-Order Equations

Consider the first-order equations

— +— +R;=0 (B7)

i=1,2,...,m, where P;, Q; and R; are linear or nonlinear functions of the independent and depend-
ent variables, e.g., P, =P;(x, ¥, u;, u,, .. ., uy). Forinstance the governing equations for two-

dimensional flow can be written in the above form.

Dropping the i subscript and using Q,, to denote the value of Q on the n-th line for any one
of the i values in Equation (B7) we have from Taylor-series expansions

Qnﬂ - Qn—l aQn h2 a3Qn
+ —

= + O(h?* B8
o 3y 6 o’ (h?) (B8)
and also
aQnﬂ aQn aQn—l asqn
- 2— + = h + 0(h%). (B9)
ay oy oy ay3

Eliminating 3°Q,/dy> from (B8) and (B9) and substituting

(0Qy/3y) = - Ry - (0P, /0x) (k =n-1,n,n+1) (B10)

gives

v TR

et . . iy
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where P,
&

order h

1 ] ’ ’
Py *+ 4P, + Py y) 4

,ie., O(N™%).

Qn+l -

1
+ E(Rnﬂ + 4R, + Rn—l) =

0,

(B11)

= dP, /dx. Hence a tridiagonal system for the x derivatives is obtained which has error of
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